Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cogn Neurodyn ; 14(4): 473-481, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32655711

ABSTRACT

Cerebrovascular accident (CVA) is one of the leading causes of death and disability worldwide, as well as a major financial burden for health care systems. CVA rodent models provide experimental support to determine possible in vivo therapies to reduce brain injury and consequent sequelae. This study analyzed nociceptive, motor, cognitive and mood functions in mice submitted to distal middle cerebral artery (DMCA) occlusion. Male C57BL mice (n = 8) were randomly allocated to control or DMCA groups. Motor function was evaluated with the tests: grip force, rotarod and open field; and nociceptive threshold with von Frey and hot plate assessments. Cognitive function was evaluated with the inhibitory avoidance test, and mood with the tail suspension test. Evaluations were conducted on the seventh- and twenty-eighth-day post DMCA occlusion to assess medium- and long-term effects of the injury, respectively. DMCA occlusion significantly decreases muscle strength and spontaneous locomotion (p < 0.05) both medium- and long term; as well as increases immobility in the tail-suspension test (p < 0.05), suggesting a depressive-type behavior. However, DMCA occlusion did not affect nociceptive threshold nor cognitive functions (p > 0.05). These results suggest that, medium- and long-term effects of DMCA occlusion include motor function impairments, but no sensory dysfunction. Additionally, the injury affected mood but did not hinder cognitive function.

2.
J Chem Neuroanat ; 57-58: 1-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24662146

ABSTRACT

Experimental ischemia results in cortical brain lesion followed by ischemic stroke. In this study, focal cerebral ischemia was induced in mice by occlusion of the middle cerebral artery. We studied cortical layers I, II/III, V and VI in the caudal forelimb area (CFA) and medial agranular cortex (AGm) from control and C57BL/6 mice induced with ischemic stroke. Based on our analysis of CFA and AGm motor cortex, significant differences were observed in the numbers of neurons, astrocytes and microglia in the superficial II/III and deep V cortical layers. Cellular changes were more prominent in layer V of the CFA with nuclear pyknosis, chromatin fragmentation, necrosis and degeneration, as well as, morphological evidence of apoptosis, mainly in neurons. As result, the CFA was more severely impaired than the AGm in this focal cerebral ischemic model, as evidenced by the proliferation of astrocytes, potentially resulting in neuroinflammation by microglia-like cells.


Subject(s)
Brain Ischemia/pathology , Motor Cortex/pathology , Stroke/pathology , Animals , Apoptosis , Caspase 3/metabolism , Cell Count , Forelimb/innervation , Immunohistochemistry , Mice , Mice, Inbred C57BL , Necrosis
SELECTION OF CITATIONS
SEARCH DETAIL
...